首页
友情链接
Search
1
贝壳找房 | Flink 运维体系在贝壳的实践
212 阅读
2
5 年迭代 5 次,抖音基于 Flink 的实时推荐系统演进历程
203 阅读
3
如何通过用户分层,提升用户增长?
129 阅读
4
百分点大数据技术团队:基于多 Spark 任务的 ClickHouse 数据同步方案实践
123 阅读
5
新型智慧城市安全论坛西安举行 促城市数字化转型发展
120 阅读
未分类
人工智能
智能机器人
智慧城市
智慧农业
新零售
智慧教育
智能医疗
智慧金融
AI政策
AI企业
机器学习
AI架构
金融科技
AI+
医疗科技
数据分析
登录
/
注册
Search
标签搜索
机器学习
算法
数据可视化
区块链
人工智能
AI
金融科技
金融
人脸识别
大数据
腾讯
银行
蚂蚁金服
比特币
支付
机器算法学习
算法学习
医疗AI
安防
人工智能架构
AI 技术学习
累计撰写
3,068
篇文章
累计收到
0
条评论
首页
栏目
未分类
人工智能
智能机器人
智慧城市
智慧农业
新零售
智慧教育
智能医疗
智慧金融
AI政策
AI企业
机器学习
AI架构
金融科技
AI+
医疗科技
数据分析
页面
友情链接
搜索到
98
篇与
银行
的结果
2020-06-30
微众银行区块链首席架构师张开翔:区块链上隐私保护的挑战和应对
近日,微众银行区块链首席架构师、FISCO BCOS开源区块链平台首席架构师张开翔做客HKSAIR《AI金融》系列线上讲座,以“区块链上隐私保护的挑战和应对”为主题,探讨区块链如何为数据隐私和信息开放构建一座天平。以下为张开翔演讲全文,雷锋网(公众号:雷锋网)《AI金融评论》做了不改变原意的整理:我是微众银行的张开翔,我们团队从2015年开始研究区块链。在讲区块链和隐私保护之前,先简单过一下区块链的概念和分类。首先,真正的区块链必须是在分布式网络上的。区块是有序号、有高度,一个区块接一个区块地互相依赖生成,这样可以做到数据的严格校验,不丢、不错、不乱。再用密码学来校验数据的稳定性、可靠性、完整性。下面两层加起来,更像一个分布式数据库或分布式网络。行业里有个玩笑,说它是最慢的分布式数据库。像比特币的TPS就是7(笔/秒),以太坊大概是10+。我们联盟链其实还是快很多,单链TPS目前是两万左右。这里就涉及到性能优化的课题了。分布式这么慢,它还有什么价值?它的价值就在于多方协作。区块链的灵魂与核心是什么?共识。没有多方智能合约与共识算法来达成透明、高效、可信的合作,那它就只是个分布式数据库。那多方合作是为了什么?肯定是为了资产交易,数据分享。计算和数据共享基于智能合约透明的规则,大家共同执行,这就是区块链。区块链的基本特性是什么?介绍隐私保护之前,我们先来了解区块链怎么组织这些数据和规则。首先,在每个节点里,都有相同的区块的数据结构。简单来说,就是每个block里都包含一批交易。每个交易可能体现的是一次资产转移,比如a给b转了100块钱。这个交易必须是事务性的,交易执行结果在所有节点上一致,怎么做到这一点?即通过共识和数据同步,意味着所有数据都会存到链上所有节点。如果这个链接入了10个节点,数据存了10份一模一样的;如果是1万个节点,那数据存了1万份,它也是一模一样的,一个字节不错、不丢,说明所有人都可以看到这个数据,也能验证数据。(如果)有少量的人篡改数据,其他人可以通过共识和验证来拒绝修改,并且在发现修改之后惩戒篡改者。所以,区块链可以达成这样几个效果:第一,数据难以篡改。要改,则必须算力达到50%以上,或者与链上所有或大部分共识记账节点串谋,还是可以做到篡改,但这非常难,几乎不可能实现。第二,规则透明。因为智能合约在所有列的节点上是同样的虚拟机和代码,对同样的输入运行结果肯定是一样的,是可验证的。第三,可追溯。既然大家都有所有数据,而且数据是含括了block 0到block最近高度,这就意味着可以追溯。因为以上几点,从而达成了区块链最重要的特点——信任。但是,任何事情都具有两面性。说到区块链上的隐私挑战,首先定义一下隐私是什么?你的个人数据和信息是隐私:除了你有多少资产、银行存款、不动产等,还包括你跟谁交易,也就是银行流水。我之前递交出国签证申请,需要附上最近半年银行流水和交税记录。当时我很诧异,也很难接受,我觉得这些交易关系是我的隐私数据。从流水中的交易信息,可以分析出交易时间、地点、交易对象、常用的交易类型是零售还是转账,这些都是你的行为模式。现在所谓的大数据营销,更多的就是基于你的身份、拥有资产、交易关系、交易频率、行为模式等信息,来对你进行用户画像,分析出你的习惯喜好。还有一种是大容量数据文件,在商业场景较为常见。比如刷脸会留下视频,签合同会留下PDF文件,大量用户行为产生一堆大数据集,这其实都是隐私的、个人的、商业的数据。所以,隐私是立体化的,它包含很多维度,各种场景、时间、行为都会产生隐私数据。区块链上隐私保护的实现那区块链上的隐私是怎么表达的呢?以前,大家都说比特币和以太坊本来就是隐私的,但它隐私基础的重点是匿名。在比特币、以太坊上转账,用的是一个私钥和私钥生成的地址,并不包含用户联系电话、真实姓名、邮箱等个人信息,大家看到的就是一串密码串。比特币网络的创建者中本聪,到现在也没有人知道他是谁。听起来这是一个很成功的隐私保护方案。但是,如果你不注意私钥保管,或者自己把地址公布到某个论坛上,让别人去给你转账,那就意味着这个地址在论坛上跟你的账号绑定了。如果你参与了某种交易所,登陆交易所需要个人手机号注册、上传身份证,这时你的地址就跟身份绑定;又或者是通过反洗钱、反恐融资策略——总之可以利用一些方法,将账户跟你的个人身份联系上。从技术手段来看,IP映射是指无论你在哪台计算机,发出哪个通信包,只要能被抓包下来,就可以分析包里的很多信息,映射到你这台电脑,获取你的账号、地址等。社工分析也可以基于你论坛上的行为、个人朋友关系、动账的交易关系进行跟踪。如上图所示,只要转账,就有关系网,这都是公开可追踪的。区块链的特征是透明、共享、可追溯、广泛参与:透明就意味着拓展了信息暴露的维度;共享就意味着增加了数据存储的位置,所有节点都存储数据;可追溯就意味着你的隐私数据存储可能是永久的,并不是存储一段时间后就删掉丢弃,延长了隐私存储时间,就很难被遗忘;广泛参与,是说区块链作为分布式网络,一定是有各方共识的,这时,参与的网络里就可能有短板,而公开的网络环境更容易掺入非信任角色,联盟链在这一点上相对会好些。所以,区块链其实带来了更大的隐私挑战。有种说法是区块链大量使用了密码学,所以它是可信可验证的,但其实这里的因果关系要调换一下——是因为区块链本身追求公开透明,为了在公开透明的基础上达成信任和验证,才要引入更多密码学算法。在工作中,我们会遇到很多灵魂拷问:作为一个金融机构,每天的交易信息都是透明的吗?怎么做到上链的数据可验证,但又不被看到,更不会被窃取?数据上链后,能不能删掉?加密数据会不会被暴力破解?现在都用椭圆曲线、RSA算法、对称非对称加密,用很长的密钥来保护数据。从数学理论上来说这些都可确保数据安全,但量子计算出来之后该怎么办?……个人认为,量子计算技术成熟到应用可能还没这么快,目前来看,量子计算的形态可以交换密钥,但想要处理和破解大量数据还是比较难。可是,对金融业来说,如果数据保留二、三十年,甚至永久保留,即使使用长密钥加密,链上数据也可能被破解。父亲的数据被破解,影响了儿子,影响几代人,(这种现象)理论上是存在的。当然,密码学保护和攻击的两个阵营,是呈交叉螺旋上升式:你有矛,我就有盾,只是看矛和盾哪个硬,要用多少成本去保护数据。隐私保护在实际场景中的应用金融典型场景一:风控假设一个借贷服务,涉及多机构共同参与,这些机构联合为借贷人提供资质证明和资金,这就意味着这些机构要投票判断用户信用、决定贷款利率等。但金融有风控独立的要求,就是a机构与b机构的规则应该是互相独立、各自运作的,如果只有一套规则且全部透明就有可能被人猜到。这还涉及到用户隐私问题,比如用户在a机构发生的交易数据,不应该直接交给b机构,a机构和b机构都应该用自己的数据和数据来对用户进行判断。这些都是隐私保护。征信和风控有相似之处,但其中的不同是征信要用大量的、多维度的有效数据,涉及到社保、银行、税务各机构的多方参与。怎么把不同维度、不同机构的数据连接在一起,整理出风控模型,这就自然而然联想到联邦学习。金融典型场景二:资产流转下图左侧展示的场景类似二级市场:有发行、代理销售,代理机构a不希望代理机构b知道自己的代理情况,用户不希望别人知道自己买入卖出,这都是个人账务资产变化,属于隐私信息。隐私保护策略,哪个更好?现在确实有很多隐私保护的策略,像是零知识证明、安全多方计算、可信硬件环境、全同态密文计算等,还有相关规范标准,那是不是就能完整保护隐私了?我的观点是,每种隐私保护策略各有所长,各有所短,它的长短可能都体现在性能、功能、复杂度和中心化程度上。零知识证明和安全多方计算,就是隐私保护的核武器,非常有潜力。但其也有局限,比如零知识证明重点在于证明一个事物的有效性,而不在于运算,但用户的账目、风控模型都涉及计算。安全多方计算是可以用于联合计算,但现在它处在从两方向多方发展的阶段,多方安全解决起来比较困难,牵涉成本、计算量、复杂度。我们都知道,手机有个安全区,把密钥保护在安全区可以降低安全风险——但一个大企业把成千上万的数据保护在安全区,就相当于完全依赖安全区。安全软硬件依旧会有漏洞,还是要及时升级,总的来看,依赖硬件体系的反应速度会比较慢。同态非常有趣,两个密文相加得到一个密文,密文解密之后是这两个密文对应的明文相加的结果。它可以用于多种情况的账目计算,但只能计算,很难验证,也就是计算结果如果是错的,在密文情况下无法得知。而且,现在同态一般是用于加法计算,乘法计算的速度比较慢。另外,同态的数据量如果是比较大,那么其数据膨胀和运算速度降低就会非常明显。群/环签名,它很轻也有不错的性能,但主要面向身份,不面向数据。规范和标准,依赖很多链外管理手段,比如惩罚、司法追责。我们要把这些手段全部综合起来,在性能、功能、复杂度和中心化中取平衡,在不同的场景下扬长去短,来达到成本和效果的最优。那就要求从多维度考虑隐私保护,它是个立体的场景化问题。身份、资产、交易,这是我们要保护的基本信息。首先,这些信息是否可见?如果连数据都碰不到,那没办法利用这些数据做任何事情。其次,能看到之后,我们能不能使用?如果看到的是一串密文,那无法使用,还可以运用混淆、脱敏的方式来保证这些信息不完整性。例如,有账户信息,但没有身份信息,这样就无法被利用。比如,密码学有个密码信封,只有信封密钥的人才能打开。又或者是使用很多方式,比如一次一密的假名,来防止关联,这样就无法对用户进行画像,外人可以看到的只是孤立的数据,没有办法对用户做什么。最后,就是你看到的数据能不能被控制。控制数据就是说,你们把我的账转给别人,改变我的属性,我就要做权限控制,做安全加密的安全策略和多方制衡。正如前文所述,区块链有个特点:如果你改数据,别人不同意,共识算法不通过,我有拜占庭容错,这就是一种多方制衡。我们要达到几个效果:看不见数据,不知道数据,不能改,但它在区块链上依旧是可验证、可监管。这就是联盟链的特点——要可监管、合法合规,这些要求要覆盖链上整个生命周期,包括收集、传输、存储、使用、屏蔽、销毁。生命周期的每个阶段都有不同的特点,环境还牵涉网络、存储、内存计算和云,要用不同的技术手段去应对。所以我们的整个版图还是很庞杂,图上的底层就是各种各样的隐私技术,并不是一两个算法、密码承诺或者简单的不经意传输就能够涵盖的。从可见、可用、可控思维看区块链联盟链治理联盟链跟公有链最大的区别在于,联盟链有准入机制。所有接入联盟链的人、机构、节点、身份都是可知的,接入前需向运营委员会申请。委员会是多中心化的,并非单点。如果大家同意你加入这个链,给你分配了证书、公私钥,就可以接入这个链。方式是发起连接。如果这个人或节点在链上有恶意行为,委员会还可以把他踢掉。隔离机构参与业务时,有可能和不同的人发生交易,作为机构,会希望这些人里没有交集,这样同业的倾轧、数据泄露等情况都不会发生。我们研发的底层平台有一个群组架构,就是在区块链上拉出一个局部共识的独立账本。群组里信息互相隔离,群可以扩容,也就是你可以建立无数个群,覆盖无数业务,这样从性能、功能上来说都有极大好处。在不同的群、不同的链上的不同信息需要互相验证、打通,就走跨链的路径,这项技术安全上是可控的。角色隔离,首先要定义清楚,不同的人做不同的事情。有个术语叫DO分离,就是开发和运营分离,开发不能做运营的事情,运营也不用去写代码。扩展一下,就是建设、管理和使用是分离的,避免一个角色又当裁判又当运动员,以免他触达太多数据,可能会侵害隐私,这就是整个联盟链的角色分层理念。刚才说到了节点、人、权限的隔离,再看数据隔离。我经常被问到一个问题:要传输一个文件,能不能上链共享,但同时上链后不让所有人都看到这个文件?这时,可以将文件加密再放上链。还有一种文件不需要上链的方法,链上存储的是一些标识或URL,是一些哈希,它们相当于文件的指纹。通过链上链下结合:链上建立哈希指纹,链下传输文件,用户可以在链上得到指纹,去验证文件。如果文件密级不高,可以用IFPS,但它是把文件分片,依旧可以串谋几个计算机把文件分片聚集再拼出文件。如果是密级较高,还是建议用自有存储的方式。交易隔离,链下有些私有交易,是高频、小额、点对点的,可以放到链下,像闪电网络就是类似风格。这样操作一方面可以提高性能和响应速度,更重要的是解决交易关系的问题。区块链上的两个人通过点对点网络沟通,完全可以不经过服务器。所以点对点的过程是完全隐私的,只是最终产生了账目,总账里不包含这种点对点交易的隐私信息。分布式标识协议(DID协议)这个协议是由DIF(全球分布式身份基金会)与W3C(万维网联盟)国际标准化组织共同推进,目标是形成开放网络,大家统一身份、互联互通,做到数据无缝共享和流转。这种模型可以连接人、物联网、数据,服务各种各样场景,包括金融、政务、医疗。它是非常开放且通用的标准,参与其中的用户可以自行控制并拥有数据,这跟之前很多互联网模型不太一样。在互联网模型里,互联网巨头保存所有数据,我们说的在“云”上,(其实)都在别人机房里。用户只有一个登陆密码,没有管理和拥有数据的权限。这是非常重要的一点:用户保存、控制自己的数据,这个数据是一种凭据,从权威机构,或是用户业务行为而来,它们不仅仅是数据,而是证明,是可信、可验证的证明。怎么理解分布式DID协议?首先,用户要做KYC,比如刷脸,叫KYC生成标识。全局唯一标识,标识的样子就是密码串。中间这条竖线左边所有东西都是用户自己持有和控制的,右边是你要交出去的,中间就起到防火墙作用。这里有个隔离,谁找你要什么数据,必须表明访问策略,就像你的安卓手机安装APP时,询问你开启摄像头权限,也就是用户同意访问策略,才会给出一个表述或披露。这个披露可验证,但它是选择性的最小化披露。这就是隐私保护非常重要的模式:你保存管理自己的数据,明示同意,经过批准、审核之后,挑选一些数据,把它生成一个密文证明,给到对方去认证。因为区块链连接了权威机构、用户、商家,所以在链上进行可信的验证,就是区块链和隐私保护的一个有机结合。企业数据则涉及人、行为、业务的大量数据,如果要联合做业务,就会考虑采用联邦学习,在多家机构做到数据不出自己机构,还能够训练出一个有效模型。这个模型就可以导入区块链上,链上的行为,风控、交易汇率、信用评级、定价等等,都可以采用联邦学习训练出的模型,非常有意义。不同目标要采用不同的算法,比如收集大量的数据,要做差分隐私;为了防止画像而做假名化;数据脱敏再做同态加密,汇总到云上,这都是大批量的群体数据算法,适用于大数据挖掘以及联邦学习等。再来看看身份隐秘,其适用在匿名支付、匿名投票、匿名竞拍场景。如果可以匿名,又可监管的话,用户就不用担心自己的投票行为会招致别人非议。数据隐秘,资产里的数字、交易行为,都是数据。支付、投票、竞拍,这都是场景。其中可能用到包括同态加密,零知识证明、安全多方计算、TEE等技术。这一系列的技术怎么为业务所用?前面提到这么多隐私保护策略、数据维度和算法,一个场景不太会每个技术都用到,所以我们把这套技术整合成开发包方案,覆盖从业务层、服务层、区块链到智能合约的整体架构,不同的客户端用不同的密钥,使用SDK和模板工具生成场景所需的隐私保护工程和策略。值得一提的是,每个人的隐私偏好有所不同,但我们是以最严厉的隐私保护标准来做的,这样对整个生态的未来才是健康的。我们的技术也是开放的,包括区块链,绝大部分都是开源易用的,可以适配很多场景。总结一下:隐私保护,机会和挑战并存。隐私保护是立体化策略,去设计一个通用的隐私保护策略其实很难,我们现在做的是针对大量场景做有效实现,也欢迎大家一起研究实践,一起达成技术、业务以及整个生态价值的突破。即将启幕CCF-GAIR 全球人工智能与机器人峰会———AI金融专场历届 CCF-GAIR 已汇聚多位诺奖、图灵奖得主,28位海内外院士,21位世界A类顶会主席,103位Fellow,400多位知名企业家以及100余位VC创始人出席。8月7日-9日,《AI金融评论》将在第五届CCF-GAIR中举办「AI金融专场」,目前统计学“诺贝尔”— COPSS总统奖得主,摩根大通执行董事,世界顶级学会主席,金融巨头首席科学家、首席风控官,已确认出席。会议详情与合作,可联系专场负责人周蕾,微信:LorraineSummer雷锋网雷锋网雷锋网
2020年06月30日
14 阅读
0 评论
0 点赞
2020-05-26
今晚8点|中国银行(香港)资讯科技部总经理郑松岩:透视国际金融中心的网络安全与隐私数据保护
作为国际金融中心,香港的金融业动态一直是业界的风向标之一。早在2016年,香港金管局已着手为银行制定一套网络安全计划,以促进本地金融科技稳健发展。“网络防卫计划”(C-RAF)于2016年12月推出第一阶段,已成为监管要求的一部分,以检视银行网络安全体系及发生问题时的应对措施。近四年时间过去,如今香港金融业的网络安全水平如何?银行系统又遭遇过哪些突发状况?香港在金融业网络安全和个人隐私数据保护的建设思路与全球其他地区有何异同?香港当局是否有进一步的监管措施?为此,香港人工智能与机器人学会(HKSAIR)邀请了HKSAIR副理事长、中国银行(香港)资讯科技部总经理郑松岩做客线上讲堂,以“香港金融业网络安全和个人隐私数据保护”为主题进行分享。这也是HKSAIR主办的《AI金融公开课———隐私计算和联邦学习在金融领域的应用与机遇》系列公开课第三期。本系列由HKSAIR理事长、微众银行首席人工智能官杨强教授领衔,共六位顶尖专家做客线上讲堂,围绕隐私计算和联邦学习的研究热点与商业应用展开最前沿的分享和讨论。雷锋网《AI金融评论》作为独家合作媒体,也将对此次系列公开课进行全程报道,敬请关注。分享主题香港金融业网络安全和个人隐私数据保护嘉宾介绍郑松岩,HKSAIR副理事长,中国银行(香港)资讯科技部总经理香港中文大学工商管理硕士(EMBA),香港城市大学计算机科学硕士。从事信息科技和金融行业工作20余年,负责集团信息IT战略规划和营运,推动和调动IT资源,带领银行进行大规模信息科技重组。热心服务社区,致力改善香港的信息科技应用水平和推动中国传统文化的研究,将中国智慧与西方理论结合起来,用于职场和日常应用。直播时间2020年5月26日 20:00-21:00雷锋网(公众号:雷锋网)
2020年05月26日
11 阅读
0 评论
0 点赞
2020-04-21
课程报名|全球首个工业级联邦学习开源框架是如何落地应用的?
如何在满足用户隐私保护、数据安全和政府法规的前提下,进行跨组织间数据合作?“联邦学习”或将成为解决这一行业性难题的关键技术。作为国内联邦学习先锋团队,微众银行已自研并推出了全球首个工业级联邦学习开源框架FATE。我们邀请到了微众银行联邦学习开源项目FATE技术负责人范涛做客雷锋网公开课,就关键技术如何落地到开源项目FATE,以及FATE在信贷风控、客户权益定价、监管科技等领域的一系列应用为主题展开分享。这也是雷锋网(公众号:雷锋网)《AI金融频道》与《AI科技评论》联手打造的《金融联邦学习公开课》第三期,本系列共有五位顶尖联邦学习专家陆续做客线上讲堂,敬请关注。嘉宾介绍范涛,微众银行联邦学习开源项目FATE技术负责人FedAI联邦学习开源平台FATE和联邦学习联盟网络技术负责人。加入微众前,曾任职百度,腾讯,负责AI、大数据相关项目研发,具备丰富的机器学习算法和产品实践经验。目前主要研究方向包括联邦学习,机器学习,深度学习,迁移学习等。如何听课?公开课负责人:周蕾,微信:LorraineSummer关注公众号「 AI金融评论 」,在公众号对话框回复关键词“听课”,即可进群观看该系列所有课程直播。
2020年04月21日
12 阅读
0 评论
0 点赞
2020-03-24
百融云创副总裁薛婧:新风控如何避免错失“白户”?丨公开课回顾
上周,雷锋网(公众号:雷锋网)AI金融评论邀请到了百融云创副总裁薛婧做客雷锋网公开课,以“AI助力金融机构五大场景智能化转型实战讲解”为题进行了干货分享。后续将有更多课程上线,添加微信号 AIFintech_leiphone 报名听课。关注AI金融评论,后台回复“百融公开课”即可下载课件。目前薛婧负责百融云创客户的解决方案及行研中心两大部门,她表示,线上业务相对成熟的的一些机构,实际上整体业务量并没有受疫情的影响,反而比去年同期(即农历春节前后)的状况要好很多。而金融机构也从原来更注重自研产品的思路,向以客户为中心转变,基于客户需求进行相应产品的开发和迭代。在服务3500余家金融机构、日均辅助审批信贷申请数百万笔的磨练下,百融云创摸索出了一套金融重点业务场景智能化转型的独家招式。薛婧结合百融云创的丰富合作经验,解读了金融机构从网点式思维向线上化、智能化转型的技术方针。以下为薛婧分享内容节选,雷锋网AI金融评论做了不改变原意的编辑。本部分主要是结合金融业务的实际场景,来介绍人工智能可以如何帮助金融机构去真正实现一些智能化的转型。首先讲人工智能还有整个金融行业的发展,实际上金融行业每次革新性的发展都是离不开技术的。我们以银行为例,目前为止银行已经进入到了4.0时期。银行的1.0时期,实际上是从1472年开始,以第一个物理网点出现为起始。到了1980年,银行开始出现了ATM机,这个时候就过渡到了2.0版本。随着互联网的技术,包括移动智能手机的不断普及和应用,银行进入到3.0的阶段。这个时期的主要特点,实际上就是移动钱包、移动存款啊,包括很多电子银行,都是在这个时期在逐渐开展业务的。从17年开始一直到未来很长一段时间,进入到银行的4.0时期,已经从原来的网点业务开始逐渐转向深入到各个场景方。所以未来银行很可能是一个无感知的、开放银行的概念,它会把自己的服务能力嵌入到各个场景下,在各个场景内客户就可以得到相应的金融服务。无论是银行,还是其他原来很多的业务,它的业务模式其实是基于自己的网点或者线下门店来开展的。之前机构更加注重的是自研产品,就是我开发了一个新的产品,实际上是客户需要来适应我,而不是我基于客户的需求来开发的。这是原来的传统自营业务模式。银行非常稳健,它的转型也是比较慢的。现在互联网业务竞争激烈,银行也已经开始意识到说,首先不能够再固步自封,不能够以产品为中心,而是要以客户为中心,基于客户的需求,来进行相应产品的开发和迭代。同时,由原来的网点式思维,转变成现在积极利用线上化的工具,为客户提供更顺畅的、更快捷的一些普惠业务。从疫情开始一直到现在,我们观察到,对于线上化业务已经相对成熟的金融机构,比如说像消费金融和其他的一些非银机构,他们原有的信审流程就已经是线上化的。做一笔借款,秒批秒贷,很短的时间内就可以拿到相应的金融服务产品了,这都是因为他有一套完整的线上风控流程来做支持。银行很多业务是以线下网点为基础,你要到网点去做面签才能够完成这项业务。而且整个审批流程也比较长,很多环节上都是需要人工介入,就会拉长审批时效性。我们发现,前面说的线上业务相对成熟的的一些机构,实际上整体业务量并没有受疫情的影响,反而比去年同期(农历春节前后)的状况要好很多。反观银行,整体业务量就会受到大幅度的影响,节后三周我们观察到的结果要比19年下降了至少5成,至少5成——大量的客户实际上都已经转到了其他线上化相对成熟的金融机构。所以这个是机构整体业务模式的转变。疫情对于金融机构,尤其是像银行这样相对保守性的机构,这是加速了它们转型升级的步伐。原来可能还是想再看一看,现在已经是不得不去做实事了。今天重点介绍这五个场景:智能风控、智能营销、智能支付、智能客服和智能投顾,看在这几个场景下,人工智能的技术是如何助力金融机构来做整体转型的。智能风控智能风控主要指的就是基于信贷场景下,综合判断是不是能够给这个客户贷钱?贷完钱之后,能不能够及时足额还款?如果不还,贷后催收可以怎么处理?在智能风控的全流程里,贷前就是我们讲的准入阶段,就是银行或者金融机构决定要不要借你钱的环节。实际主要关注的是两类风险:欺诈风险——是不是来骗钱的?再有一个就是信用风险,就是能不能未来足额还钱。贷中环节,就是说我已经把钱给他了,但是客户还没有完成所有的还款周期,贷中要持续监控他的状态,这个时候会有相应的风险预警。贷后,也就是真正出现逾期之后,会有很多的客服和催收人员来打电话,在整个贷后管理上,也可以运用一些智能化的工具来提升整体的效率。在具体的应用上,比如说在贷前用人脸识别技术,一定程度上解决需要线下面签的问题。关系图谱的反欺诈应用它其实是人工智能技术的一个应用分支,去分析客户的聚类现象,通过一些算法可以找到这些顶点之间的一种关系。如果聚在一起,代表他们其实是有一些强绑定的关系的。图谱最核心的应用点就是找到欺诈客户,会发现一些黑中介者是团伙欺诈。比如说这张图,我们拿到了一个客户的手机号,在底层数据进行关联,发现它关联了4张身份证号,然后又关联了一个邮箱。那么其中三个身份证号还有邮箱都没有关联出任何信息,只有一个身份证号又关联出了一个邮箱,然后关联出一个电话之后,这个关系网络也断了。在我们的这个判断里,就会认为他是一个疑似的黑中介。一个正常的客户,实际上他的手机号跟身份证号之间是有绑定关系的,现在的话可能差不多有2~3个是比较正常的。一下子有了4个甚至以上的绑定关系,一个手机号绑定了四五个以上的这样的身份证号,可以想象到它的一个场景是,用一个手机绑定不同的实名信息,也就是其他的客户信息来进行骗贷,在同一个平台或者多个平台来进行骗贷,所以才会有这样的结果。大家可能会问,这是怎么找到这些实名信息的?实际上在整个的欺诈环节内,很多的黑中介或者是团伙欺诈,他们是有相应的渠道可以拿到你的姓名、身份证、手机号,而且成本非常便宜,不到一块钱。拿到这些信息之后,就可以跟他的手机绑定,然后在平台上进行申请。所以之前遇到有些客户说,看到自己的人行征信,发现欠款了有逾期,这个客户其实根本就不知道自己有这笔借款,很可能就是因为他的信息被盗用了。黑中介以他的身份进行借贷行为,最后产生逾期。另一种情况是,比如说张三跟李四,两个不同的人,公司也不同,但是你发现他们留下的前台座机号是同一个,或者手机通讯录完全一致,所以通过这样的一些关系分析,我们就可以找到这种团伙。如果是个人贷款产生不良,实际上只是一笔;但如果是团伙,一旦金融机构没有准确识别,基本上全部都会是坏账,这对金融机构的压力就会非常大。我们最近的数据也显示,在疫情的作用下,全国整体的团伙欺诈风险都在上升。除此以外,还有智能风控的智能机器人。大家最先接触到的智能机器人是在一些银行的网点,机器人可以跟你一问一答,产生交互。现在疫情,很多银行客服也是没有办法上班的,所以这个时候有些银行全部都调用的智能语音产品,由机器人提供相应的服务,也是一个趋势。大数据的风控模型如何搭建?简单来说,原来传统的模型、搭建方式,是用逻辑回归,而且主要依据人行征信报告,无非基于客户之前有没有不良记录、欠款,然后判断整体风险,再决定要不要放贷。你会发现很多都是信贷强相关的数据,我用逻辑回归,基本上用不超过10个变量,就可以综合判断了。但是传统风控建模,在现有的场景下,它遇到的最强大的挑战就是很多白户。很多年轻人群就属于我们讲的那种,没有之前被服务好的长尾客户。实际上他们之前没有办过信用卡,没有车贷,没有房贷,所以在人行征信上你看不到其他的所有的信贷记录。但是这些客户也有非常强的信贷需求,而且这里边有很多优质客户,比如说工作5年以内的年轻白领,他虽然现在可能没车、没房,甚至没有信用卡,但是他未来一定会是银行非常好的潜在客户。所以其实用传统的风控模型,你会发现,有大量的客户会被银行拒绝掉,拿不到银行服务的。所以新型智能化风控模型,我们用的是什么方式?首先用到的,可能是非信贷场景下的弱相关变量,就是并不基于信贷场景下来进行分析的。比如说你之前的一些消费行为,浏览行为,你经常喜欢看哪些模块的内容?还有你的社交圈,虽然这些跟信贷不是直接相关,但是可以判断你的整体风险。所以在整个的模型搭建上,我也不会只用10个左右的变量,甚至可能有成千上万个变量,所以这个时候就需要有人工智能的算法来做支持,它会用到像上面我们看到的GBDT、神经网络等等,这样一些更高级一点的算法,把这些成千上万个变量来进行整合。最后我来综合分析这个客户,我到底要不要给他准入?所以这是两个非常大的区别,用专业一点的话来说,就是传统风控模型,我用到的是信贷强相关的数据。但用到的关键变量解决不了白户的问题,一旦客户缺失某几项信息,模型就是不稳定的,后果就是我对这个客户没有办法进行准确判断。大数据风控模型的思路是,用非常多的弱相关变量,去综合分析客户。即使他之前没有发生过任何借贷行为,我依然可以判断客户的风险。为什么现在很多客户可以在不同平台上借贷了?你想要的金融服务除了银行以外,其他机构也能帮你来实现,而且整个的流程是非常顺畅的。为什么可以实现秒批秒贷?实际上都是有这些大数据和人工智能的技术在帮助金融机构去做综合判断。除此以外,我们还有像智能训练平台,一站式建模,会把刚才提到的很多非常复杂的算法,把它包在整个的自动训练平台里边。要了解算法和场景,需要非常高的学习成本。市场上的风控人员实际上是很稀缺的,我们把百融6年的经验全部包在这个线上化的自动模型训练平台上,对于小白分析师或者刚入行的从业人员来讲,很快就能搭建完一个复杂的机器学习模型,整个模型的开发周期也大幅缩减,基本上是在以天为单位就可以完成一个模型的开发、上线和部署。智能客服这次很多金融机构没有办法集中上班,所以也用到大量的智能语音工具。在这个场景下,包括文字坐席、智能IVR(Interactive Voice Response,互动式语音应答)机器人去跟客户产生交互,还有智能质检等。举个例子,这是客户已经逾期的场景。基于现在的疫情,我们在做贷后管理的时候,实际上是会有这样的一些话术可以给到机构的。另外一个最近常用的场景,是基于很多地方政府或者社区,需要对社区居民回访。更多场景应用的案例音频,请持续关注AI金融评论,全场回放视频即将上线。在跟客户产生交互的时候,主要采用的是IVR。当我们听到客户的语音,首先机器人要把它转化成文字,也就是ASR技术(Automatic Speech Recognition,语音识别),微信语音长按转文字就是ASR技术的一种体现。第二步就是机器人的大脑,NLP技术(自然语言处理)。我要准确知道客户到底说了什么,要知道如何回复客户,如何应答。当我理解了客户的意思,也知道应该如何回答客户的时候,这个时候要把这段文字再转化成语音,这里用到的是TTS(Text To Speech,文本到语音),可以理解成是语音转换器。最后这段语音推给客户,通过IVR来进行交互——这么多步骤,实际上机器人跟客户之间的交互是没有什么延迟的。智能营销还是以银行为例,因为银行的例子会丰富一点,也是大家平时能够接触到的。对于银行来讲,传统的营销方式主要包括物理网点上的营销、地推路演、沙龙会议,用电话或者短信触达,在媒体广告上进行传播。这些大家都不陌生,但你会发现实际上这里边有一个问题:受制于场景和场地,没有办法触达全量的客户;也不够精准,并不了解这个客户他真正的需求是什么,他只是盲目去推广,广撒网。可能我把传单给到了所有人,但实际上这个客户可能是一个VIP客户,另外一个客户可能根本就不符合我的准入条件,他的资质可能都不是特别好。传统的整体营销方式,会有种种局限。那么在整个营销智能化的转型中,人工智能技术可以帮助银行去做的一件事情,就是帮助你更准确地去分析客户的需求,同时给客户去匹配与它需求相对应的产品。这一点实际上是非常关键的。这里面我们会用到的技术也比较多,比如说像客户画像,会用到一些相应的营销的评分,来帮助银行来进行整体的客户分层。主要目的就是帮助银行来分析,哪些才是你的目标客户?这些目标客户适合现有的哪些产品?真正达到了一个更精准的效果。而且节省大量的人工,省去和不必要的一些劳动力。智能投顾花旗银行的数据显示,到2017年的时候,中国的个人可投资资产总额已经达到了188亿以上。估计到2020年底,国内的整体可投资的资产规模将要达到200万亿以上,高净值人群的比重也将上升到49%。今年的疫情可能会使数据有一些波动,但实际上整体的趋势还是看得非常清晰的。财富其实是增长的,那么如何很好地去进行投资,让财产能够保值增值,这都是大家非常关注的问题。大众对资产配置的渴望在增加,原来的基金公司、理财公司更多关注的是高净值的客户,有很多长尾客户的需求,实际上并没有真正地被满足到,没有很好地被服务到。这就跟现在发展普惠金融业务,包括对于长尾客户的零售金融业务,整体思路是一致的。随之上线的就是智能投顾的产品,其实就是对于这些小散户,提供一些真正符合他们需求的智能化建议。在智能投顾的发展过程中,实际上非常重要的一环就是KYC(Know your customer,了解你的客户),就是你要知道这个客户的风险是什么样的?他的需求偏好是什么样的?我应该如何给他配置资产?是需要给他多买一些固定收益产品,还是需要进行风险投资?现在是不是有保险的需求?他最近有没有一些贷款的需求?在客户的整个生命周期里,需求的内容都是不一样的,需要真正能够了解客户现在的一些资产状况、近期计划和中长期计划来综合考虑。在美国,我不知道有没有观众考过CFA,它其实主要培养的就是投资经理、理财经理。这些理财经理实际上服务的客群也是VIP的高净值客户。他需要收取高昂的管理费,在这个场景下,他才会为你量身定制去分析你现有的资产状况,在近期之内你有没有一些消费支出,比如孩子上学、出行计划、有购房需求等等;远期你的养老金应该如何来打理等等,他会按照你的整个生命周期进行一个全流程全方案的分配,制定专属的投资建议书。这项服务目前为止对于个人客户,尤其是散户来讲,还是比较奢侈的。所以智能投顾未来如果真正能够发展起来,它是有非常广阔的场景。目前为止中国的智能投顾还是存在一些很明显的问题。首先整体行业的技术并不成熟,它并没有达到真正根据不同资产状况和全生命周期来制定不同投资计划的水平,现在很多时候还是需要人工介入,没有办法实现我们实现智能化、自动化的财富管理目的。另外,银行目前对智能投顾的投入和发展还是相对落后的。同时,公众的认知也有待提高,大家对整个智能投顾(的了解),可能更多是一个概念,知道有这么个东西但实际上并不会信任他,更多的还是把钱直接去给到银行的理财经理,让他们来帮助你来做整体的投资。但随着大众认知的提高,技术的不断提升,一定会有这样的一些平台,能够开发出相适应的一些产品,来服务长尾客户群体。全场回放视频即将上线,敬请期待。
2020年03月24日
16 阅读
0 评论
0 点赞
2020-03-17
直播预告|告别纸上谈兵,这次我们谈谈金融机构智能化的真刀真枪
AI金融不再是一个陌生的议题,但金融机构借AI之力开展的智能化转型却道阻且长。疫情的意外出现,催生出前所未有的金融线上化、智能化、数字化的转型需求,这也正是考验各大金融科技公司“军备实力”的关键时刻。我们需要关注的,不仅仅是技术本身,更要看能否从真实的场景需求出发,真正发现问题、定义问题和解决问题;要成功跨越信息不对称的鸿沟,将技术转化为解决方案,从诞生,到应用,再到规模化,正式带到机构们的面前。这次雷锋网邀请到百融云创副总裁薛婧,从行业头部公司丰富的合作和服务经验出发,带来“AI助力金融机构五大场景智能化转型实战讲解”的分享。后续雷锋网(公众号:雷锋网)公开课将继续带来一系列AI金融课程分享,邀请一线金融科技企业的资深高管做客,进行更深入的案例详解和技术干货。欢迎关注公众号「AI金融评论」或添加客服小助手微信,第一时间获取精品课程最新消息。开课信息时间:2020年3月18日(本周三)晚20:00-21:00主题:AI助力金融机构五大场景智能化转型实战讲解主讲者:百融云创副总裁薛婧分享提纲百融云创与数千家金融机构合作经验沉淀大型银行智能信贷体系建设复盘银行、保险精准营销服务解决方案详解智能机器人多场景实际应用案例分析背景金融服务整体自线下迁移至线上的趋势渐强,用户对服务效率等各方面诉求也全线升级。对金融机构而言,绝不能只停留在被动响应客户需求的阶段。要想主动出击,就要深刻读懂金融业务不同环节的痛点,全业务链条、全生命周期的智能化转型势在必得。百融云创曾提出,要对传统信贷流程革新,将“先获客再风控”转变为风控营销合二为一,在营销端就对用户行为习惯和属性进行完整分析,为产品个性化推荐打下基础,由此为机构在线上信贷全流程降本增效。在服务3500余家金融机构、日均辅助审批信贷申请数百万笔的磨练下,百融云创摸索出了一套金融机构重点业务场景智能化转型的独家招式。嘉宾介绍薛婧,百融云创副总裁毕业于南开大学,超过11年金融行业服务经验,包括银行、保险公司、证券公司、大型基金。模型相关的经验包括:反欺诈模型、信用评估模型、授信模型、风险水平模型等。目前负责百融云创客户的解决方案及行研中心两大部门,为各类信贷客户提供售前咨询、需求确认和反馈、量身定制解决方案等内容,曾为工行、中行等进行内训,主导中行、长沙银行、广东农商行等咨询项目。适宜人群与机构企业:银行等金融机构、涉足风控领域的金融科技公司、互联网金融公司从业者与创业者高校:金融风险管理、人工智能相关研究背景的教授、研究员;欲从事金融行业的学生监管:“三行一会”等金融相关监管机构的从业者通过本系列课程,你将学习到资深行业高管眼中的金融科技世界头部公司的AI金融解决方案与成功商业化应用案例前沿技术在各大业务场景的研发进展长按海报扫描二维码,添加客服小助手报名,备注「AI金融」,即可进群观看直播。雷锋网雷锋网雷锋网
2020年03月17日
7 阅读
0 评论
0 点赞
1
2
...
20